

DEWATS FOR AMAGHAR

Godavari, Lalitpur, NEPAL

Background

Amaghar (Ama = Mother; Ghar = Home) is a home for underprivileged children located at Bishankhu Narayan VDC, Lalitpur district near Godavari. The home is run Ama Foundation, a US-based non-profit organization dedicated to providing underprivileged children of Nepal a loving home, education, and the chance to live healthy and secure lives within their community. The Amaghar building has been designed to merge traditional Nepali architecture with modern environmentally sustainable technology. Solar panels and cookers will save precious electricity and innovative waste and wastewater management systems will recycle materials into fertilizers and cooking fuel. The home is designed to house about 100 people.

Kind of Project	DEWATS-SME (Institutional)	
Implementing Agency	ENPHO	
Construction Period	2010-2011	
Construction Cost	NRs. 1,500,000 (US\$ 20,080)	

Purpose

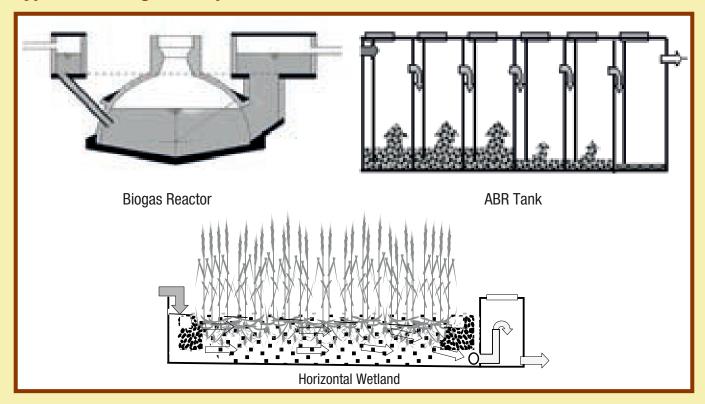
- To demonstrate integrated solid waste and wastewater management that generates cooking gas and recycles water.
- To minimize the impact of Amaghar in the surrounding environment

System in Brief

A three step treatment system (Biogas reactor, ABR and Horizontal wetland) has been established. Black water from the toilets is first sent to the biogas reactor, along with the organic solid waste from the kitchen. Greywater is sent directly to the Anaerobic Baffle Reactor (ABR). The outlet of the ABR is connected to a horizontal flow wetland for further treatment. The system is also proposed to have a sludge drying bed to treat and reuse the sludge coming out from the ABR.

- Biogas reactor for black water and solid waste
- Grease Trap for kitchen grey water
- Settling Tank for combined flow, part of Anaerobic Baffle Reactor (ABR)
- ABR with 5 chambers
- Horizontal Flow Wetland

Salient Features


No. Treatment Plants	1	
Source	Domestic	
Design Capacity	8m³/d	
No. Users (Designed)	100	
Design Influent Quality	BOD = 2083 mg/L	
Black water	COD = 4167 mg/L	
	BOD = 214 mg/l	
Grey water	COD = 429 mg/l	
Effluent Quality	BOD = 50mg/L	
(Expected)	COD = 169 mg/L	

Modules Adopted

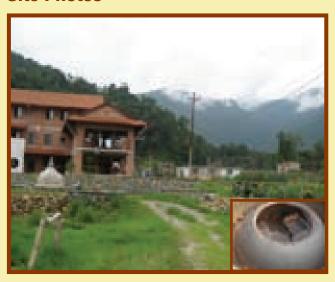
Biogas Reactor: TED Model				
Capacity:	17m³			
Radius:	2m			
Gas Storage	4.2m ³			
Settler & ABR (Anaerobic Baffled Reactor)				
Nos of chambers	1 (settler), 5 (ABR)			
Surface Area	8m²			
Volume	17m³			
Planted Gravel Filter:	1 Horizontal Reed Bed			
Surface Area	55m ²			
Depth:	50 to 60 cm			
Filter Material:	Coarse sand & gravel			
Plants Used:	Phragmites karka, and Canna			
Total Puilt IIn Areas	<i>latifolia</i> 75m²			
Total Built Up Area:	/ JIII-			

Typical Drawing of Components

Operation and Maintenance

ENPHO have provided one day 0 & M training for the Amaghar staff, who are responsible for all operation and maintenance of treatment plant with occasional supervision and monitoring by ENPHO when required. Yearly desludging is proposed for the effective operation and performance of the treatment system, a sludge drying bed has been proposed to be constructed on site to manage the sludge from ABR. The operation and maintenance costs are funded by Amaghar.

Reuse Options


Biogas is used as cooking fuel in the kitchen and the treated wastewater is being collected in a pond and is being utilized for irrigation purpose.

Monitoring Results

As the Aamaghar DEWATS unit has just been established, it is too early to evaluate its performance. However, initial monitoring of the effluent from the plant indicates that the plant is functioning well and all key parameters such as TSS, BOD, COD and oil & grease are within national standards. As this is an integrated plant to process both solid waste and wastewater, its performance needs to be monitored carefully over a period of time.

Effluent	National standard
7.2	5.5-9.0
2.4	-
18	-
33.5	50
48	50
153	250
1.9	10
	7.2 2.4 18 33.5 48 153

Site Photos

For more information,

Environment and Public Health Organisation (ENPHO)

110/25, Adarsa Marg-1 New Baneshwor,

600 Pay 4102 Kethmandu & Toly 977 01 4402199

GPO Box 4102, Kathmandu • **Tel:**+977-01-4493188 **Email:** enpho@enpho.org • **Web:** www.enpho.org

Published by ENPHO, with assistance from

